

Sonic Feedback to Movement -Learned Auditory-Proprioceptive Sensory Integration Tamar Regev^{1,2,3} Armin Duff² Sergi Jordá³

1- Edmond and Lily Safra Center for Brain Sciences, and the Interdisciplinary Center for Neural Computation, The Hebrew University of Jerusalem, Israel 2- SPECS - Synthetic Perceptive Emotive and Cognitive Systems, 3- MTG - Music Technology Group, Universitat Pompeu Fabra, Barcelona, Spain

Introduction

Experiment Design

Profound effect of music and sound on bodily movement Recent technological advances -

Human Computer Interaction (HCI)

Possible implications for sonic movement rehabilitation

cognitive science 🗲 HCI

Proprioception 'proprius' = own knowledge of relative positions and movement of body parts

Sensory integration

Somatic proprioception

- Visual proprioception: natural

Alien hand illusion [Nielsen 1960, Sørensen 2005]

- Auditory proprioception?...

► Goal - assess effect of sound on movement • Operationalization - motor task Hypotheses -

HI. sonic feedback improves accuracy **H2.** manipulation of mapping affects movement accordingly

Motor Task -

0.0-

discrete

Inverse effectiveness

of sensory integration

Correlation of Integration Effectiveness with Somatic performance

Group - pitch paradigm

continuous

			Point 1	Point 2	11~2
	Somatic		3 trials	3 trials	
		1%	1 trial	1 trial	}
	Sonic	5%	1 trial	1 trial	11
		10%	1 trial	1 trial]]
Mapping Stretch Conditions					
55 -				Point 2	
54					-
ā ⁵³					-
ي ج		Poi	nt 1		-
² 51 -				— 1% — 5%	-
50					-
49 -			L		-
48	10 20	30	40 50	60 70 80	.ii.) 90
Angle (degree)					

Subjects not informed about manipulation

► Asked if noticed at the end

3 trials

3 trials

▶ Repeated measures

Randomized

Somatic

Sonic

3 trials

3 trials

Conclusion

• Quantitative assessment of **learned sensory integration Effective**, fast utilization of sonic feedback

Manipulation of mapping possible technique for movement rehabilitation reinforcing sound

Future Work

Limitations

Dependence on hearing abilities Continuous/discrete pitch Awareness to manipulation

Sound design Sensor design