

THE HARRY & SYLVIA HOFFMAN LEADERSHIP & RESPONSIBILITY PROGRAM

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM الجامعة العبرية في اورشليم القدس

Multiple timescale sensitivity of EEG components to statistical features in unattended tone sequences

Tamar I. Regev¹Israel Nelken^{1,3}Leon Y. Deouell^{1,2} 1- Edmond and Lily Safra Center for Brain Sciences, 2- Department of Psychology, 3- Department of Neurobiology, The Hebrew University of Jerusalem, Israel

Introduction

Auditory information is processed on various timescales:

Methods

2 EEG experiments: Experiment 1 - 21 musicians Experiment 2 - 27 musicians

Particiants were asked to ignore tone sequences while concentrating on a silent film

• P2 - modulated by distance from previous note

- Neurons with wide frequency tuning curves cause co-adaptation by neighboring frequencies.
- Neurons responsible for the N1 response might have a longer time constant of recovery from adaptation, while neurons responsible for the P2 response have a shorter temporal constant.

Allows estimation of temporal constants and width of tuning curves in the human cortex.

Linear mixed effects analysis:

 $V \sim 1 + \text{distance from mean} + \text{distance from previous} + \text{current note} + (1|\text{subject})$ dominant **N1** P2 contribution:

Conclusion

Evidence for neural representation of frequency distances on various timescales simultaneously in the human auditory cortex.

N1 adaptation is based on a longer timescale than P2, which is more transient.

Neural mechanism might be based on adaptation with wide frequency tuning curves and various temporal constants.