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Abstract

Everyday auditory streams are complex, including spectro-temporal content that varies at multiple timescales. Using EEG,
we investigated the sensitivity of human auditory cortex to the content of past stimulation in unattended sequences of
equiprobable tones. In 3 experiments including 82 participants overall, we found that neural responses measured at
different latencies after stimulus onset were sensitive to frequency intervals computed over distinct timescales.
Importantly, early responses were sensitive to a longer history of stimulation than later responses. To account for these
results, we tested a model consisting of neural populations with frequency-specific but broad tuning that undergo
adaptation with exponential recovery. We found that the coexistence of neural populations with distinct recovery rates can
explain our results. Furthermore, the adaptation bandwidth of these populations depended on spectral context—it was
wider when the stimulation sequence had a wider frequency range. Our results provide electrophysiological evidence as
well as a possible mechanistic explanation for dynamic and multiscale context-dependent auditory processing in the
human cortex.
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Introduction
To function efficiently, sensory systems should interpret incom-
ing stimuli in the context in which they are embedded. Contex-
tual effects in audition are often studied using sound sequences
that have some regularity, which is infrequently violated by
“deviant” sounds. These studies show that in humans, auditory
event-related potentials (ERPs) depend on the preceding statis-
tics of the sequence (Sussman 2007; Garrido et al. 2013; Her-
rmann et al. 2015). However, processing of context is important
for any stimulus sequence structure and not just for detect-
ing regularities or change thereof. Here, we studied contextual

effects beyond deviance processing, using human EEG record-
ings, and modeling.

Context integration mechanisms are diverse. One way of
efficiently representing context is by summary statistics of
past stimulation. Indeed, humans can reliably report the mean
pitch of several pure tones (Albrecht et al. 2012; Piazza et al.
2013), and sound textures are represented using time-averaged
statistics (McDermott et al. 2013). As the environment constantly
changes, estimating summary descriptors dynamically may
optimize information transmission (Brenner et al. 2000;
Fairhall et al. 2001). Across species and modalities, neuronal
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input–output functions scale with statistical properties of the
stimulus distribution including mean (Dunn and Rieke 2006;
Nagel and Doupe 2006; Dean et al. 2008; Dahmen et al. 2010),
variance (Blake and Merzenich 2002; Maravall et al. 2007;
Rabinowitz et al. 2011; Herrmann et al. 2013, 2014, 2015), or
higher order moments (Kvale and Schreiner 2004; Herrmann
et al. 2018, 2020).

The timescales over which context influences neural activity
vary widely, from tens of milliseconds to minutes (Fairhall et al.
2001; Khouri and Nelken 2015). Presumably, this variation is
necessary because the natural auditory environment contains
relevant information at all of these timescales. Sensitivity of
auditory neural responses to regularities established across mul-
tiple timescales was reported in single A1 neurons in animals
(Ulanovsky et al. 2004), human MEG (Teng et al. 2017; Maheu et al.
2019; Teng and Poeppel 2020), or the EEG components MMN and
P2 (Costa-Faidella et al. 2011). However, all of the above studies
concentrated on regularity/deviance detection.

We investigated context-dependent auditory processing that
does not involve regularity/deviance-detection mechanisms
by measuring EEG responses to tone sequences with varying
frequencies in which all stimuli were equiprobable and task-
irrelevant. First, we present a new analysis of data from
the control conditions of 2 experiments (1 and 2) previously
published (Regev et al. 2019). We show here that in these data,
the N1 and P2 event-related EEG components (peaking ∼100 and
∼180 ms following stimulus presentation, respectively) were
sensitive to preceding tone frequencies on distinct timescales.
We then designed another study (Experiment 3) to replicate and
generalize these exploratory observations.

Previous studies have established that the timescale of
N1 sensitivity is longer than ∼1 s (Zacharias et al. 2012;
Okamoto and Kakigi 2014; Herrmann et al. 2016). Further, the
context sensitivity of the N1 component, but not of the P2
component, has been well explained by adaptation models
(Herrmann et al. 2013). Importantly, Herrmann et al. (2013)
had used a predetermined adaptation time constant to model
both N1 and P2. Here, we use a frequency-specific adaptation
model (Herrmann et al. 2013, 2014, 2015) to explain our
previous results as well as the new dataset, but instead of
using a predetermined time constant, we develop a rigorous
methodology to quantitatively estimate, from the data, the
effective timescales governing context sensitivity at multiple
post-stimulus latencies. Our methodology further allowed us to
statistically compare between the time constants estimated for
distinct response components (N1 and P2).

The hypothesis driving our model in this work is that audi-
tory responses at different latencies (i.e., the latencies of the N1
and P2 components) might be explained by frequency-specific
adaptation with different adaptation timescales. Therefore, we
expected that our previous observation of a longer timescale of
context sensitivity at the earlier post-stimulus latency (of the N1
relative to the P2) will replicate in Experiment 3.

Previous studies had also suggested that the adaptation
bandwidth of N1, but not of P2, dynamically adapts to the range
of frequencies presented in the stimulus stream (Herrmann
et al. 2013) and that this could be caused by cross-frequency
adaptation (Taaseh et al. 2011, also termed co-adaptation
in Herrmann et al. 2013). Cross-frequency adaptation is the
attenuation of the responses of frequency-selective neurons
to their characteristic frequency by previous presentations
of frequencies away from their characteristic frequency.
Therefore, in Experiment 3, we manipulated the overall range of

frequencies in the sequences. Following Herrmann et al. (2013),
we hypothesized that the adaptation bandwidth of N1 would
depend on the spectral range of the stimulation sequence.
Importantly, we wanted to know whether this result generalizes
to the P2 latency.

To foretell, our model, applied to the extant and to new
data, allowed us to confirm that N1 and P2 are sensitive to
different timescales of past stimulation, to replicate the dynamic
spectral-context-dependent adaptation bandwidth of N1, and to
extend it to the P2 latency. We conclude that this type of adap-
tation, with varying bandwidths and timescales, is a general
mechanism shaping auditory ERPs.

Methods
Participants

Eighty-nine healthy adults participated in all 3 experiments—
25 musicians, 29 musicians, and 35 nonmusicians in Exper-
iments 1, 2, and 3, respectively. The reason musicians par-
ticipated in Experiments 1 and 2 is not relevant to the cur-
rent study and is explained by Regev et al. (2019). Participants
were recruited from The Hebrew University of Jerusalem, from
Bezalel Academy of Arts and Design, and from the Jerusalem
Academy of Music and Dance and could either receive 40 NIS
(∼12 US$) per hour or course credit for participation in the
experiment. The data of 7 participants (4, 1, and 2 from Experi-
ments 1, 2, and 3, respectively) were excluded due to technical
difficulties with the recording or excessive rates of artifacts.
The analysis therefore included the data of 82 participants—
21 in Experiment 1 (7 female, mean age = 29.2 years, standard
deviation [SD] = 9 years), 28 in Experiment 2 (15 female, mean
age = 24.6 years, SD = 3.6 years), and 33 participants in Experi-
ment 3 (19 females, mean age = 24.6, SD = 2.9 years old). Three
additional participants (1 from Experiment 2 and 2 from Exper-
iment 3) were later excluded from data analysis due to unclear
auditory responses, resulting in 79 participants overall in the
analysis, as explained further in the Data Processing section.
All participants self-reported normal hearing and no history of
neurological disorders. The experiment was approved by the
ethical committee of the faculty of social science at The Hebrew
University of Jerusalem, and informed consent was obtained
after the experimental procedures were explained.

Stimuli and Apparatus

In all experiments, participants were seated in a dimly lit, sound-
attenuated, and echo-reduced chamber (C-26, Eckel) in front of a
17-inch CRT monitor (100-Hz refresh rate), at a viewing distance
of about 90 cm. The screen was concealed by a black cover, with a
rectangular window in the middle (14 by 8.5 cm), through which
they viewed the visual display. Auditory stimuli were presented
through headphones (Sennheiser HD25, having a relatively flat
frequency response function in the range of frequencies used
in the experiment) that were placed over the EEG cap. The
experiment was run using the Psychophysics toolbox (Brainard
1997) for MATLAB (version 2013b, MathWorks) running on a
32-bit Windows XP system. Auditory stimuli were synthesized
using MATLAB. The experiment included only pure tones, each
of 100 ms duration with a 30 ms linear rise and fall ramps.
The relatively long ramp was used to prevent low-level onset
differences between the pure tones with lowest and highest fre-
quencies, which were spaced up to 3 or more octaves in some of
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the sequences. Stimuli were presented at a sound pressure level
that was comfortable for the participants. At the beginning of the
experiment, each participant adjusted the relative amplitudes of
each individual tone, such that all tones had approximately the
same subjective loudness.

Experiment Design

Participants viewed silent black and white films while tones
were presented to them through headphones. The participants
could choose either “The Artist” (Michel Hazanavicius, 2011) or
“The Kid” (Charlie Chaplin, 1921), both silent movies. The partic-
ipants were instructed to ignore the sounds. Each tone sequence
in all 3 experiments was composed of pure tones of 5 differ-
ent frequencies. The specific frequencies varied between block
types (see Fig. 1A,B, A and B for an illustration of the stimuli, and
a detailed description below). To create the sequences, random
permutations of the 5 tones were concatenated successively. If
the first tone of the next random permutation was the same
as the last tone of the previous permutation, the order of tones
in next permutation was reversed. As a result, the order of the
tones was random with 3 constraints: 1) each tone occurred
exactly in 20% of the sound presentations, 2) a repetition of the
same frequency never occurred, and 3) two successive presen-
tations of the same tone frequency were separated by no more
than 8 other sounds, imposing a substantial uniformity of tone
occurrences over time.

Experiment 1
Two block types that served as control conditions in Experiment
1 of Regev et al. (2019) were used for the current study. Condition
1 included 5 pure tones: Db4, B4, G5, Eb6, and A6 (letter and
number notations refer to the pitch class and the octave, Inter-
national Standards Organization (ISO) system for register/octave
designations. The frequencies of the tones were 277.2, 493.9, 784,
1244.5, and 1760 Hz, respectively). Hence, the tones spanned two
and two thirds octaves (32 semitones) and the inter-neighbor
intervals (frequency intervals between adjacent tones on the
sequence-specific frequency axis, see Fig. 1B) were 10, 8, 8, and
6 semitones from low to high frequency. The mean frequency
(computed on the logarithmic frequency axis) was that of G5—
784 Hz. Condition 2 included Eb4, Db5, A5, F6, and B6 (311.1,
554.4, 880, 1397, and 1975.5 Hz, respectively). These were similar
to the tones in Condition 1, but all shifted 2 semitones down.
Three blocks of each condition were presented, and their order
was counterbalanced between participants. Each block included
500 trials, 100 of each specific tone. This resulted in 300 trials
for each specific tone in each condition. The tones were pre-
sented with an stimulus-onset asynchrony (SOA, i.e., the time
interval between the onsets of 2 consecutive stimuli) of either
450 or 550 ms, randomly (average SOA was 500 ms). As a result,
each block lasted 250 s, and there were at least 30 s of silence
between the blocks (at the participant discretion). See Figure 1B
for illustration of stimuli.

Experiment 2
One block type that served as a control condition in Experiment
2 of Regev et al. (2019) was used for the current study. This
condition included 5 tones with equal probabilities: Db4, C5,
F#5, D6, and B6 (277.9, 523.2, 740, 1174.7, and 1975.6 Hz, respec-
tively). Hence, the tones spanned two and five sixths octaves (34
semitones) and the inter-neighbor intervals were 11, 6, 8, and
9 semitones from low to high frequency. The mean frequency

(computed on the logarithmic frequency axis) was that of F#5–
740 Hz. Two blocks of this condition were presented. Each block
included 550 trials presented with an SOA of 400 ms. This
resulted in 220 trials for each specific tone. Each block lasted
220 s, and there were at least 30 s of silence between the blocks
(at the participant discretion). See Figure 1B for illustration of
stimuli.

Experiment 3
In this experiment, we manipulated the overall range of frequen-
cies in the sequences (Table 1). Five block types were used. Block
1 with a wide range of frequencies (Wide; three and a quarter
octaves between the lowest and highest tone, 39 semitones),
blocks 2a and 2b with a medium range (Medium; two and a
third octaves, 28 semitones), and blocks 3a and 3b with a narrow
range (Narrow; one and a sixth octaves, 14 semitones). The mean
inter-neighbor intervals were 9.75, 7, and 3.5 semitones in the
Wide, Medium, and Narrow range conditions, respectively. For
the Medium and Narrow conditions, we designed 2 different
block types (a and b), transposed by 7 semitones, in order to
generalize the results beyond the specific (absolute) mean or
range of frequencies (Fig. 1B). Each block type was presented
3 times, resulting in 15 blocks altogether. The order of the
blocks was randomized for each participant separately, with the
constraint that successive blocks had to be of different types. In
every block 540 tones were presented in total, resulting in 324
trials overall for each tone frequency in each block type.

The frequencies of all tones were taken from the C major
scale, in order to prevent a situation in which one of the tones
would become harmonically deviant and therefore result in
stronger ERP responses (Poulin-Charronnat et al. 2006; Koelsch
2009).

The SOA was randomly set to one of 5 possible values: 450,
475, 500, 525, or 550 ms. As a result, the duration of each block
was about 270 s (4.5 min), and there were at least 45 s of silence
between blocks (at the participant discretion). In total, the EEG
was recorded for approximately an hour and a half.

EEG Recording and Preprocessing

EEG was recorded from 64 pre-amplified Ag/AgCl electrodes
using an Active 2 system (BioSemi, the Netherlands), mounted
on an elastic cap according to the extended 10–20 system
(https://www.biosemi.com/pics/cap_64_layout_medium.jpg),
with the addition of 2 mastoid electrodes and a nose elec-
trode. Horizontal electrooculogram (EOG) was recorded from
electrodes placed at the outer canthi of the right and left eyes.
Vertical EOG was recorded from electrodes placed below the
center of both eyes and above the center of the right eye. This
resulted in 72 recording electrodes overall. The EEG signals were
measured during acquisition relative to a Common Mode Sense
active electrode placed over a parietal area. They were sampled
at a rate of 512 Hz (24 bits/channel) with an online antialiasing
low-pass filter set at one-fifth of the sampling rate and stored
for offline analysis.

EEG preprocessing was conducted using BrainVision Ana-
lyzer 2.0 (Brain Products) and MATLAB (2016b, MathWorks). The
following preprocessing pipeline was applied in all experiments:
First, since we paused recording during the break between
blocks, de-trending was applied using MATLAB, subtracting
long-term linear trends from each block, thus zeroing the signal
at beginning and end of blocks and avoiding discontinuities
at the border between blocks. Then, further preprocessing
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Figure 1. N1 but not P2 is sensitive to long-term context. (A) An example segment of a tone sequence in the experiment (from block type 2b of Experiment 3). (B) Stimuli
used in all experiments and conditions. Intervals between neighboring tones on the frequency axis (inter-neighbor intervals) are displayed in semitones. (C) ERPs for
tones 1–5 (low to high frequency), calculated for each experiment. For Experiment 3, ERPs are plotted for each frequency range, pooling together block types 2a + 2b

and 3a + 3b. (D) Mean and 95% CIs (across participants) of N1 peak amplitudes. For each block type, the 5 bars correspond to tones 1, 2, 3, 4, and 5 (lowest to highest)
from left to right and the bar colors match the color scheme in A and B. (E) Same as D for peak amplitudes of P2.

was done in Analyzer, using the following pipeline: 0.1 Hz
high-pass, zero-phase-shift second-order Butterworth filter;
referencing to the nose electrode; correction of ocular artifacts
using independent component analysis (Jung et al. 2000) based

on typical scalp topography and time course; and, finally,
discarding epochs that contained other artifacts. The latter part
was semi-automatic—first, an algorithm marked artifacts based
on predefined criteria: absolute difference between samples
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Table 1. Description of stimuli in Experiment 3

Condition 1 (wide) 2a (medium) 2b (medium) 3a (narrow) 3b (narrow)

Notes A3, G4, E5, D6, C7 C4, G4, D5, A5, E6 G4, D5, A5, E6, B6 G4, B4, D5, F5, A5 D5, F5, A5, C6, E6
Frequencies (Hz) 220, 392, 659.26,

1174.7, 2093
261.6, 392, 587.33,
880, 1318

392, 587.3, 880, 1318,
1975.5

392, 493.88, 587.33,
698.46, 880

493.88, 698.46, 880,
1046.5, 1318

Inter-neighbor
intervalsa (low to
high, semitones)

10, 9, 10, 10 7,7,7,7 7,7,7,7 4,3,3,4 3,4,3,4

Mean frequency
(note, Hz)

F5, 698.46 D5, 587.33 A5, 880 D5, 587.33 A5, 880

Range (octaves) 3 1
4 2 1

3 2 1
3 1 1

6 1 1
6

Range (semitones) 39 28 28 14 14
Mean Inter-neighbor

interval
(semitones)

9.75 7 7 3.5 3.5

Note: Tone properties are listed from low to high.
aMean interval between nearby tones on the sequence-specific frequency scale, Figure 1B.

>100 μV within segments of 100 ms; gradient >50 μV/ms;
absolute amplitude >100 μV; or absolute amplitude <0.5 μV
for a duration of more than 100 ms. If an artifact was detected
using any of these criteria, an epoch of 200 ms around it was
marked. Then, we performed visual inspection of all data to
remove or add rare artifacts that were missed or marked by
mistake. Artifact rejection was performed on 30 Hz low-passed
data, causing the artifact rejection process to be blind to high-
frequency noise, which did not interfere with our analysis.
Then, the data were exported from Analyzer to Matlab (without
the 30 Hz low-pass filter). Finally, using MATLAB, a 1–20 Hz
band-pass zero-phase-shift fourth-order Butterworth filter was
applied to the continuous data, followed by segmentation and
averaging.

Data Processing

We calculated ERPs locked to auditory stimulus presentation.
The ERP amplitudes were measured from the midline central
Cz electrode. This location was selected because it maximizes
the N1 and P2 responses and is typically used to measure these
components (e.g., as in Tremblay et al. 2001). The data were
parsed into segments beginning 100 ms before the onset of
tone presentation and ending 400 ms after the onset of tone
presentation. The average amplitude of the 100 ms pre-stimulus
time served as a baseline for amplitude measurements. ERPs
were obtained for each participant, by separately averaging trials
of every block type and every tone, conditioned on every possi-
ble previous tone. This resulted in 5 tones × 4 previous tones
(because there were no repetitions) × number of block types (2,
1, or 5 in Experiments 1, 2, and 3, respectively) ERPs. We then
calculated the peak amplitudes of the N1 and P2 components for
each ERP yielding 40, 20, and 100 measurements per participant
and potential type in Experiments 1, 2, and 3, respectively.

N1 and P2 peak amplitudes were calculated in 2 stages. First,
to minimize misidentification of peaks due to noise, we deter-
mined the peak time from the average of all presentations of
each tone (i.e., not conditioned on the previous tone frequency)
for each block type and participant. The resulting ERPs were thus
based on a large number of trials and had satisfactory signal-to-
noise ratio. We defined the N1 latency as the time of the absolute
minimum (most negative) in the time window between 50 and

150 ms after stimulus onset and the P2 latency as the time of
the absolute maximum in the time window between 130 and
250 ms after stimulus onset. If the peak latencies corresponded
to the edge of the corresponding time windows, the participant
was excluded from data analysis. In total, 0, 1, and 2 participants
were excluded for this reason from Experiments 1, 2, and 3,
respectively, leaving 20, 27, and 31 participants in the analysis
of the experiments. We then computed the average voltage in a
12-ms window around the detected peak time for every possible
combination of tone frequency with a previous tone frequency.
Thus, peak latencies were determined for each tone frequency
and block type regardless of previous tones, whereas the peak
amplitudes were measured around these latencies, contingent
on the previous tones. Overall this resulted in 4480 data points
for each potential type (participants × measurements per partic-
ipants, see end of previous paragraph; 21 × 40 = 840, 27 × 20 = 540
and 31 × 100 = 3100 for Experiments 1, 2, and 3, respectively), or
8960 (4480 × 2 potential types, N1 or P2) altogether.

Statistical Analysis of ERP Peak Potentials

To test the effect of both long- and short-term context on N1 and
P2 peak amplitudes, we used linear mixed-effects (LME) models.
LME models were run in Matlab 2016b using the fitlme function.
To be able to compare between the N1 and P2 amplitudes, the
data were standardized using a z-score transform on the N1
and P2 separately, after multiplying N1 data points by −1. N1
and P2 amplitude values were modeled using 8 fixed factor
predictors, 4 for each potential type. The 4 predictors were
as follows: an intercept, 2 continuous slope variables termed:
“Interval-Mean” (long-term context: frequency interval between
current tone and mean frequency overall in the sequence, semi-
tones), “Interval-Previous” (short-term context: interval between
current and previous tone frequencies, semitones) and another
slope variable representing interaction between the 2 latter
variables, encoded as their product: “Interval-Mean ∗ Interval-
Previous.” Random effect factors were added for all of the 8 fixed
factors, grouped by participant number. In general, to determine
whether a factor should be part of the model, we compared the
2 (nested) models trained with and without this specific factor
using a likelihood ratio test (Matlab “compare” routine). If the
likelihoods of the 2 models were not significantly different, that
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factor was excluded. Thus, in this model, we omitted the random
(but not the fixed) slope of the interaction variables “Interval-
Mean ∗ Interval-Previous” (both for N1 and P2) since they did
not contribute to the overall explained variance (Likelihood ratio
test between the model with and without these factors; χ2(2) = 3,
P = 0.21). This resulted in 6 random effect terms in the LME
model. The final LME model is described with the following
Wilkinson formula (Wilkinson and Rogers 1973):

Voltage ∼ I(N1) + I(P2) + Distmean · I(N1) + Distmean · I(P2)

+ Distprev · I(N1) + Distprev · I(P2) + Distmean · Distprev · I(N1)

+ Distmean · Distprev · I(P2) + (
I(N1)|s) + (

I(P2)|s)
+ (

Distmean · I(N1)|s) + (
Distmean · I(P2)|s) + (

Distprev · I(N1)|s)
+ (

Distprev · I(P2)|s) (1)

where Voltage is either N1 or P2 standardized amplitudes of the
responses to a specific tone (given all previous tone possibilities,
for each experiment, condition and participant). I(N1) and I(P2)
are indicator functions for N1 or P2 (each being 1 when the
voltage belongs to the corresponding class and 0 otherwise).
They therefore represent separate intercepts for N1 and for P2.
Distmean stands for Interval-Mean, Distprev stands for Interval-
Previous. For example, Distprev · I(N1)denotes the Distprev slope
variable contributing to the N1 amplitudes. (X|s) denotes the
random variable X grouped by participant number. The vari-
able X is always assumed to be normally distributed with a
mean of 0, and its variance is estimated from the data. Thus,
(I(N1)|s) denotes a subject-specific contribution to the intercept
for the N1 measurements; (Distprev · I(N1)|s) is a subject-specific
contribution to the corresponding slope. This LME model was
estimated from data points from all 3 experiments together,
resulting in 8960 data points overall (see end of Data Processing
section), collected from 79 participants.

Note that this is almost identical to modeling each potential
type (N1 or P2) separately by:

Voltage ∼ I + Distmean + Distprev + Distmean · Distprev + (I|s) +
(Dist_prev ∗ I|s) + (Dist_mean · I|s) (2)

However, there are some distinctions. For instance, in the way
we estimated the model the residual error is calculated overall
from all data together, and therefore, it is more appropriate for
statistical comparisons between the estimates of N1 and P2,
which was one of our main goals.

For each fixed-effect coefficient, a standardized effect size,
Cohen’s d, was computed by dividing the estimate by its SD.
The SD was calculated from the estimate standard error (SE)
provided by Matlab function fitlme, multiplying it by the square
root of the number of degrees of freedom, DF (DF = 78; number of
participants – 1). The significance value of each individual coef-
ficient (ANOVA comparing it to 0) was given by the fitlme model
output. To statistically compare between the contributions of
2 (or more) coefficients, we ran a post hoc coefficient test (F-
test) for LME estimates, using the coefTest function in Matlab.
Cohen’s d of these effects was calculated as the square root of
F/DF (DF = 78, as above).

To ensure the robustness of the results, we also ran a 2-level
analysis, commonly used for example to analyze group results

in functional MRI studies. A linear regression was run for each
participant with regressors similar to the fixed effects above. We
then performed a second-level analysis of the estimates using
paired t-tests on participant-specific estimate values.

To test the interaction of the overall frequency range of
tones in the sequence with the effects estimated by the LME
analysis described above, we ran another LME model adding
interactions with the continuous slope variable range (overall
frequency range in the sequence, semitones: Wide: 39, Medium:
28, and Narrow: 14). For each term in the above model, we added
another interaction term with range. This resulted in a large
number of variables in the model and therefore we omitted the
higher order interactions that did not contribute significantly to
the overall explained variance, according to a likelihood ratio
test as described above. All random terms including the range
variable as well as both fixed and random effects of the Interval-
Mean ∗ Interval-Previous terms did not contribute significantly
to the overall explained variance (Likelihood-ratio test between
the models with and without all of the latter terms; χ2(12) = 6.5,
P = 0.88) and therefore were omitted from this model. However,
since the fixed factors of the interaction terms Interval-Mean
∗ Interval-Previous were included in the previous model, we
estimated as well a model including these variables and verified
that the results were comparable with and without them. These
LME models were run only on data points from Experiment 3,
in which the range was manipulated within subject, resulting
in 6200 data points (3100 datapoints per potential type × 2
potential types, N1 or P2, see end of first paragraph of Data
Processing section) collected from 31 participants. Effect sizes
were calculated similar to the above, using DF = 31 – 1 = 30.

Single-Trial EEG Amplitude Extraction

We calculated single-trial EEG amplitudes as the average voltage
in a window of 12 ms centered around the latency of the N1 and
P2 as determined by the subject’s ERP (i.e., average across trials).
After excluding trials with artifacts, we were left with 2660, 1100,
and 7449 trials per participant on average in Experiments 1, 2,
and 3, respectively (resulting in 55 863, 29 701, 230 931, or 316 495
trials overall used to train the model for Experiments 1, 2, 3, or
when using all data together, respectively) for either N1 or P2. We
also fitted the model separately for each of the frequency range
conditions (Wide, Medium, and Narrow) in Experiment 3. The
total number of observations used in each of these conditions
was 46 136, 92 874, and 91 921, respectively (recall that there were
2 versions of the Medium and Narrow conditions, Fig. 1A, hence
the larger number of trials).

Adaptation Model

We used frequency-specific adaptation equations (Herrmann
et al. 2013, 2014, 2015) to model single-trial N1 and P2 responses.
The model assumes frequency-tuned neural populations with
Gaussian response profiles over a log-frequency axis. Each pop-
ulation has resources, which determine the size of the responses
that it can generate and are depleted in proportion to these
responses. Therefore, resource depletion causes the contex-
tual attenuation of the responses. Between sound presenta-
tions, resources recover exponentially with time. The amount of
resources that are depleted is termed response adaptation (RA)
following Herrmann et al. (2013, 2014, 2015). The RA values just
before the presentation of a tone were calculated recursively for
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each specific stimulus sequence, trial by trial, using Equation (3).

RAi,t+1 =
⎛
⎝RAi,t + (

1 − RAi,t
)

e
− 1

2

(
log(fi)−log(ft)

σ

)2 ⎞
⎠ · e

−�tSt→St+1
τ (3)

Here RAi,t is the response adaptation of neural population
i centered around frequency fi, at time step t of the stimulus
sequence, in which stimulus St with frequency ft was pre-
sented. RA ranges between 0 (no adaptation) and 1 (maximal
adaptation) and therefore 1-RA is the amount of available
resources and is therefore proportional to the response of
neurons (full adaptation corresponds to minimum responsive-
ness and vice versa). The Gaussian term reflects the frequency
tuning of the neural population. It determines the size of the
response evoked from population i by the stimulus presented at
time t. The response causes further resource depletion that is
determined by the frequency interval between the current tone
presented in the sequence and fi, the best frequency of neural
population i. The time interval �tSt→St+1 is the time between the
onset of the stimulus at time step t and the next stimulus at
time step t + 1. During this time, resources recover and thus RA
decreases exponentially.

There are 2 parameters in Equation (3): the Gaussian width of
the frequency profiles—σ, and the time constant of the exponen-
tial recovery—τ. These were termed together

−→
θ = (σ, τ). Once

−→
θ

is given, Equation (3) allows the computation of the adaptation
level for each neuronal population and at each time point.

Next, the model assumes a linear relationship between the
measured EEG data and RA of the population at the presented
tone frequency (Equation 4).

Voltage = a + b · RA (4)

where Voltage is the measured EEG amplitude, either N1 or P2,
and a and b are the linear factors associating RA and the data.
Since RA is defined between 0 and 1, these factors allowed for
appropriate scaling and shift to the EEG units of measurement.
The inverse relation between RA and the responsiveness of
neurons (1-RA) is captured by the values of a and b.

RAi,t was first computed for all the 5 tone frequencies i and
all t time steps in a specific sequence. Each participant heard
different stimulus sequences and therefore RA was computed
for each participant separately. Then, to predict responses at
each time step t, the relevant RA was taken as that of the neural
population i, corresponding to the tone frequency presented
at time step t, as in Herrmann et al. (2013, 2014, 2015). The
last step assumes that EEG responses measured at time step
t are dominated by neural populations centered around the
frequency of the presented stimulus fi = ft. The procedure
we used was the one used by Herrmann et al. (2013, 2014,
2015), and we used it in order to be consistent with them. A
more natural procedure would consist of integrating the RA
values for all neuronal populations, weighted by their tuning
profiles (the exponential term in Equation 3). We verified that
the 2 methods are comparable by calculating the full RA pre-
dictions, weighted by the tuning profiles, for one specific par-
ticipant and plotting them against the simplified model. The
2 models were indeed strongly linearly related to each other
(Supplementary Fig. S1).

Model Fit and Parameter Estimation

All data analysis related to model fitting was carried out using
Matlab 2016b or 2019b (Mathworks, MA, USA), and all the code is
available online (http://osf.io/mswhv). In total, the model had 4
free parameters—the 2 mechanistic parameters

−→
θ = (σ , τ ), and

the linear factors a and b. All parameters were estimated from
the data. However,

−→
θ and the linear factors were treated differ-

ently.
−→
θ are the parameters of interest for this study, while the

linear factors are “nuisance” parameters that have to be fitted
but are not interpreted. Therefore, fitting the model was done in
2 steps. First, single-trial model predictions (RA) were calculated
for a range of pre-defined possible

−→
θ values; 18 values for σ

spanning 1–18 semitones and 25 for τ spanning 0.2–5 seconds
with 0.2 second steps (resulting in 450 possible

−→
θ combinations).

Second, for each
−→
θ , single-trial EEG responses were regressed

on the computed RA values. In practice, a LME model was fitted
(using Matlab fitlme) using RA as a continuous fixed effect with
random intercept and slopes grouped by participant using the
Wilkinson formula (Wilkinson and Rogers 1973):

Voltage ∼ 1 + RA + (
1 + RA|participant

)
(5)

This approach made it possible to estimate participant-
specific linear factors while reducing the amount of overfitting
that would be generated by estimating the linear factors of each
participant separately. Log-likelihood (LL) statistics of the LME

models were extracted for each value of
−→
θ . Then,

−→
θ

max
, the−→

θ value resulting in the maximum likelihood, was selected as
the best estimate for the parameters of interest.

We fitted the model to each experiment separately and to
the data from all experiments together as well. When fitting
the model to Experiment 3, we estimated separate fixed-effect
slopes and intercepts for the different conditions composing this
experiment:

Voltage ∼ 1 + RA ∗ condition + (
1 + RA|participant

)
(6)

where condition is a categorical variable encoding the 3 range
conditions. When fitting the model using the data of all exper-
iments together, we used the same formula as for Experiment
3 (Equation 6) encoding 5 different conditions (Experiments 1,
2, and the 3 separate conditions of Experiment 3). Including
the RA ∗ condition interaction in the random term resulted
in much longer calculation times, which were unfeasible for
the nonparametric statistical tests (bootstrap, permutations, see

below), but we verified that it yielded identical
−→
θ

max
values for

the parameter fits of each experiment separately.

Testing Significance of Model Fit

To test whether the adaptation model generally described the
data better than chance, we repeated all the steps of parame-
ter estimation for randomly permuted measurements. For per-
muted data, the model was not expected to perform better than
chance and therefore this allowed calculation of the distribution
of the LL statistic under the null hypothesis of no effect of
sequence order. We used 100 permutations. In particular, for
each permutation of the data, we collected the maximum log-
likelihood (LLmax) values (over all possible

−→
θ values) and plotted

the null distributions of maximum LL values for N1 and P2
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separately. The maximum LL of real data was compared to the
null distributions of maximum LL.

Confidence Regions for the Parameter Estimates

To calculate a confidence region around
−→
θ

max
, we asked which−→

θ values are significantly different from
−→
θ

max
. Due to Wilk’s

theorem the quantity

D
(−→

θ
)

= −2 · ln

⎛
⎜⎝ likelihood

(−→
θ

)

likelihood
(−→

θ
max)

⎞
⎟⎠ (7)

should be distributed as χ2 with 2 DF under the null hypothesis

that
−→
θ

max
does not describe the data better than any other

parameter value, and for a big enough sample size. We also
verified this assumption empirically, simulating the null dis-
tribution of D at 2 representative values of

−→
θ for N1 and P2

data and showing that it is comparable to χ2 with 2 DF. For the
confidence regions, we calculated the D statistic for all possible−→
θ values and asked whether it is significant using a χ2 test with

2 DF. A large D is expected for
−→
θ values that are significantly

different from
−→
θ

max
. The D values at

−→
θ

max
always equal to 0 by

definition. The threshold of D < 6, which is approximately the
value corresponding to a P = 0.05 for the χ2distribution with 2

DF, was used to define the 95% confidence region around
−→
θ

max
.

Comparing Parameter Estimates for N1 and P2

We statistically contrasted the values of
−→
θ

max
estimated for N1

versus P2 using 3 methods. First, we compared the
−→
θ

max
values

of N1 and of P2 by checking whether the
−→
θ

max
of, for example,

N1, fell outside the confidence region of P2 and vice versa (see
previous section for the calculation of confidence regions).
Second, we performed bootstraping (random sampling with
replacement) on the groups of participants (of either Experiment
1 2 or 3 or when using all participants together), and repeated
the estimation procedure 100 times. This resulted in an estimate

of the distribution of
−→
θ

max
values (under the assumption

that the group of participants represents the population). The

distribution of differences of
−→
θ

max
values calculated in the same

bootstrap repetition for N1 versus P2 was compared to 0. Third,
we used data permutations to create the null distribution of the

difference between LL at
−→
θ

max
of the 2 potential types (termed

log-likelihood differences, LLD). For each of 100 permutation
repetitions, we flipped between N1 and P2 of single trials, with
probability 0.5 per each trial flip. For each iteration, we repeated
the estimation procedure and computed the LLD. We thus
estimated the null distribution of LLD under the assumption
that the parameters of N1 and P2 were identical and calculated
the P-value of the LLD of the actual data by comparing it to
this null distribution. We emphasize that our main goal was to
compare between parameter values estimated for the N1 and P2
latencies in each experiment rather than giving exact absolute
values for the parameters.

Comparing Parameter Estimates for Different
Frequency Ranges
−→
θ

max
values were estimated for each of the stimulus frequency

range conditions (Wide, Medium, and Small) in Experiment 3 by

fitting the model to the data of each of the range conditions

using Equation 5 and selecting
−→
θ

max
in each condition sepa-

rately. Parameter estimation was then repeated 100 times using
a bootstrap procedure—simulating new groups of participants
by random sampling with replacement from the pool of 31
participants. To statistically test the effect of frequency range on
adaptation bandwidth of N1 and P2, we fitted an LME model to
the bootstrapped σmax values. The bootstrap repetition number
was used as the grouping variable for the random effects. The
stimulus frequency range variable was modeled as a continuous
fixed effect with random intercept and slope. Thus, this LME
model is described with the following Wilkinson formula:

σmax ∼ I(N1) + I(P2) + range · I(N1) + range · I(P2) + (
I(N1)|bootN

)
+ (

I(P2)|bootN
) + (

range · I(N1)|bootN
)

+ (
range · I(P2)|bootN

)
(8)

where σmaxare the estimated adaptation bandwidths in each
of 100 bootstrap runs, in each of the 3 range conditions and
both for N1 and P2 data (600 values in total), and I(N1) and
I(P2) are indicator functions for N1 or P2, respectively. Thus,
the I represents separate intercepts for N1 and P2. Range is
the overall range of frequencies presented in a sequence, in
semitones (so range · I(N1) represents the effect of range on the
N1 bandwidths) and bootN is the bootstrap run number serving
as a grouping variable for the random effects. Effect size (Cohen’s
d) was calculated as above (DF = 100 – 1 = 99, for 100 bootstrap
repetitions).

Results
In 3 EEG experiments, 79 participants (21, 27 and 31 in
Experiments 1, 2, and 3) were presented with sequences of 5
equiprobable pure tones (Fig. 1A), which they were instructed
to ignore while concentrating on a silent film. Using a
passive paradigm allowed us to investigate neural effects
that are elicited automatically and do not depend directly on
attention or on any active task. In Experiments 1 and 2, we
analyzed the control conditions from a previously published
study (Regev et al. 2019; the published study included also
conditions involving rare deviants, which were the focus of
that study. We do not analyze these conditions here as we
focus on equiprobable sequences). The sequences in these
experiments had a relatively wide frequency range (32 and
34 semitones between lowest and highest tones used in the
sequence, respectively, Fig. 1B, Methods). Experiment 3 included
3 frequency range conditions: Wide, Medium, and Narrow (39, 28,
and 14 semitones, respectively). We examined the amplitudes of
the N1 and P2 auditory-evoked responses and their dependence
on 2 features of the tones along the sequence: 1) The frequency
interval between the current tone and the mean sequence
frequency (Interval-Mean) and 2) the frequency interval between
the current tone and the previous tone frequency (Interval-
Previous). Interval-mean represented a long-term context
variable, because in order to show sensitivity to the overall
mean in the sequence, integration of several previous tones
should occur (at least 5 previous tones, ∼2.5 s). Interval-previous
represented a short-term context variable, at the scale of 1 SOA
(∼0.5 s).
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Table 2. Linear mixed-effects (LME) results—effect of long- and short-term context on N1 and P2

Estimate SE F(1,8952) P-value d

Predictors
Intercept N1 −0.51 0.078 42.2 8.8E−11 −0.73

P2 −0.18 0.074 5.80 0.016 −0.27
Interval-Mean N1 0.04 0.004 70.0 6.7E−17 0.94

P2 −0.002 0.005 0.15 0.7 −0.04
Interval-Previous N1 0.01 0.003 26.9 2.2E−7 0.58

P2 0.02 0.003 31.8 1.7E−8 0.63
Interval-Mean ∗ Interval-Previous N1 −0.0008 0.0002 10.08 0.0015 −0.36

P2 −0.0002 0.0002 0.96 0.32 −0.11
Pairwise comparisons between predictors
N1 vs. P2 Interval-Mean 35.5 2.6E−9 0.67
N1 vs. P2 Interval-Previous 0.23 0.62 −0.05
N1 Interval-Mean versus -previous 25.4 4.6E−7 0.57
P2 Interval-Mean versus -previous 21.41 3.7E−6 −0.52
N1 Interval-Mean versus -previous versus P2 Interval-Mean versus -previous 46.3 1.03E−11 0.77

Note: Top—N1 and P2 amplitudes (standardized using a z-score transform after negating N1 data points) were modeled using the 8 predictors listed in the first (left-
most) column. The model consisted of fixed and random factors (grouped by participant) for each of the listed predictors (except for the interaction term Interval-
Mean ∗ Interval-Previous, which did not have a random factor since the latter did not contribute to explained variance), Methods. Columns 2–5: Fixed-effect estimates
(Estimate), standard errors of the estimates (SE), F-statistic used for ANOVA comparing the estimates to 0, with degrees of freedom, significance level (P-value) of the
latter test, standardized effect size (Cohen’s d, Methods). The predictors Interval-Mean and Interval-Previous stand for the frequency interval between the current tone
and sequence mean or current tone and previous tone frequency, respectively, in semitones. Bottom—Post hoc pairwise coefficient comparison between predictors.
The LME model was run on 8960 observations collected from 79 participants overall in the 3 experiments (Methods).

N1 but Not P2 Is Sensitive to Long-Term Context

Absolute N1 amplitudes increased as a function of the frequency
interval between the current tone and overall mean frequency
in the sequence. This dependence manifested itself as a
typical inverted U-shape pattern, so that the most negative
N1 amplitudes were elicited in response to the most extreme
tones and the least negative N1 was elicited by the middle tone
(which was also approximately equal to the mean frequency of
the sequence). This phenomenon was robust and replicated
in all 3 experiments (Fig. 1C,E). In contrast, P2 amplitudes
did not show significant dependence on the mean sequence
frequency (Fig. 1D,E). To quantify this effect, we used a linear
mixed-effects (LME) model including data from all experiments
together (Table 2 and Fig. 2). The difference from the mean
significantly affected the N1 amplitude, but not the P2 amplitude
(Table 2). The difference between the N1 and P2 Interval-
Mean effects (slopes) was significant (Table 2, Fig. 2—contrast
#3). A two-stage procedure including linear regression on
individual participants followed by second-level analysis at
the group level gave similar results (Supplementary Fig. S2 and
Supplementary Table S1).

P2 Is More Sensitive than N1 to Short-Term Context

N1 and P2 absolute amplitudes increased as a function of the
interval between the current and previous tone frequencies,
but this effect was larger for P2 than for N1 (Fig. 3 and
Supplementary Fig. S3). To visualize this, we pooled the possible
combinations of current and previous tones according to the
“degree of neighborhood.” Neighbor 1–4 denotes the proximity
of tones on the frequency axis in a specific sequence (Fig. 3A,B).
Figure 3C,D compares the N1 and P2 peak amplitudes for when
the previous stimulus was “Neighbor 1” versus “Neighbor 2.”
We concentrated just on the “Neighbor 1” and “Neighbor 2”
groups since they were composed of more combinations of
current and previous tones and included all current tones,

whereas by design only extreme tones in every sequence could
have neighbor “3” and “4.” The difference between “Neighbor
1” and “Neighbor 2” amplitudes was larger for P2 than for
N1 in 7 out of 8 block types overall in the 3 experiments
(Fig. 3D).

The LME model including data from all experiments together
(Table 2, Fig. 2) indicated that the frequency interval between
the current and previous tone (Interval-Previous, semitones)
significantly affected both N1 and P2 amplitudes (Table 2).
The effect size of Interval-Previous was nominally larger
for P2 than for N1 but they were not significantly different.
Notably, excluding the interaction term between Interval-
Mean and Interval-Previous from the LME model reduced
the short-term (Interval-Previous) context effect for N1 but
not for P2 (Supplementary Table S2), resulting in a significant
difference between N1 and P2 Interval-Previous effect. Thus,
whereas the dependence of P2 on short-term context was
robust, the dependence of N1 on short-term context interacted
with its dependence on long-term context. Regressions on
individual participants and second-level analysis of regression
estimates gave similar results (Supplementary Fig. S1 and
Supplementary Table S1).

Sequence Frequency Range Affects N1 but Not P2
Amplitudes

N1 amplitudes were reduced when the frequency range in the
sequence was smaller, while P2 amplitudes were not affected
much by the frequency range manipulation (Fig. 1C,D, Experi-
ment 3), consistent with the fact that N1 amplitudes were more
affected by long-term adaptation throughout the sequence than
P2. To test this statistically, we ran another LME model includ-
ing “range” as a predictor (Table 3). This analysis confirmed a
significant effect of range on the N1 amplitude but not on the
P2 amplitude and a significant difference between the effect of
range on N1 and P2 amplitudes (Table 3).
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Figure 2. Long- and short-term context effects on N1 and P2 amplitudes. (A)
Bar-graphs illustrate fixed-effect estimates values from a linear mixed-effects

(LME) model (Table 2 and Methods for further specification). “Mean” and “Prev”
stand for Interval-Mean and Interval-Previous, denoting the frequency intervals
between the current tone and the sequence mean or previous tone, respectively,
in semitones. The predicted N1 and P2 voltages were z-scored (after reversing

the sign of the N1 data points). Error bars represent 95% CIs around the estimate
(calculated by multiplying the SE of the estimate by the 95% inverse t-distribution
value (DF = 78)). (B) Violin plots illustrate comparisons between LME estimates.

Each dot represents one participant. White numbers in black circles above the
violin plots indicate to which comparison they correspond (displayed under
A). The significant contrasts are marked with an asterisk. Participant-specific
estimates were calculated by adding the common fixed-effect estimates to

participant-specific random effects. Horizontal lines represent the mean, white
circles the medians, and thick and thin black vertical lines represent the 25% and
75% percentiles, respectively.

Sequence Frequency Range Attenuates Long- and
Short-Term Context Effects

The latter LME model also indicated that both the short- and
long-term context effects were attenuated for sequences with
larger frequency ranges, consistent with adaptation with a lim-
ited bandwidth. There was a significant interaction between
the range and the short-term context effect (Interval-Previous),
such that for both N1 and P2, the effect of short term context
was smaller the larger the range was (Table 3). The interaction
between range and the long-term context effect (Interval-Mean)

was significant for N1 but not for P2 (Table 3). Notably, the
interaction terms interval_mean ∗ interval_previous both for N1
and P2 did not contribute significantly to this model, so we
omitted them (Methods), but Supplementary Table S3 presents
a comparison to a model including these terms, with similar
results.

In summary, the ERP results demonstrated that N1 and P2
were affected differently by context: N1 was highly affected by
long-term context (Interval-Mean) and P2 was not. Additionally,
both were affected by short-term context (Interval-Previous) but
P2 more robustly so. Furthermore, the spectral context (fre-
quency range in the sequence) had a distinct effect on the N1
and P2 amplitudes: Smaller sequence range reduced N1 more
than P2 amplitudes, suggesting that adaptation affects the N1
more than it affects the P2. These results imply that neural
activity at the latencies of the N1 and P2 has distinct timescales
of contextual influences. Additionally, the effects of long- and
short-term context were generally reduced for larger frequency
ranges, suggesting that some limited frequency bandwidth plays
a role in these effects.

The specific values of the timescales and frequency band-
width cannot be directly computed using the ERP analysis pre-
sented until here. Importantly, the 2 context predictors we used
in the LME models, Interval-Mean and Interval-Previous made
it possible to consider only very short- (1 previous tone) or very
long-term (the sequence mean) contextual effects. In order to
estimate the relevant temporal and spectral scales of these con-
textual effects, we employed a computational model to explain
single trial variability.

Adaptation Model

We hypothesized that both the N1 and P2 results could be gen-
erated by a single underlying neural mechanism—adaptation
of frequency-selective neural populations with relatively wide
bandwidths that have 2 different time constants.

In the auditory system, frequency-selective neurons respond
not only to their best frequency but also to nearby frequencies.
Therefore, a tone presentation would adapt not only neural
populations tuned exactly to that tone’s frequency but also
populations tuned to nearby frequencies. Further, if the interval
to the next tone is short enough relative to the timescale of
recovery from adaptation, this adaptation would not recover
fully before the next stimulus occurs. Thus, if the effective
frequency response profiles of neuronal populations are wider
than the frequency intervals between tones in a stimulus
sequence, cross-frequency adaptation (Taaseh et al. 2011; also
termed co-adaptation, Herrmann et al. 2014, 2015) would render
the adapting populations sensitive to frequency intervals.
Moreover, the time it takes for neurons to recover from
adaptation determines the duration of this effect. If recovery
rates are slow relative to the inter-stimulus interval, neurons
would accumulate adaptation due to their responses to more
than one previous tone in the sequence.

With these premises, we used computational modeling (see
Methods for equations) to test the feasibility of adaptation as
the neural mechanism accounting for the ERP results presented
above and to estimate quantitatively the effective time and
frequency scales underlying the context-sensitivity of the N1
and P2 potentials. A similar modeling approach was applied in
the past for neural responses in rats (Taaseh et al. 2011). Further,
this model was applied for EEG by Herrmann et al. (2013, 2014,
2015), and we used a similar formulation to the latter studies
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Figure 3. P2 is more sensitive than N1 to short-term context. (A) Example stimulus sequence denoting one frequency interval between 2 consecutive tones that are first-

order neighbors on the sequence frequency axis (“Neighbor 1”) and the second-order neighbors (“Neighbor 2”). (B) All possible combinations of current and previous
tones in a sequence, and their grouping into the “degree of neighborhood.” Column and row headers of the table denote ordinal tone numbers (1 to 5 from low to high
frequencies, see right axis in A). Numbers inside the table denote the “degree of neighborhood.” (C) ERPs of “current tones” when the previous tone was “Neighbor 1”
and “Neighbor 2” for each experiment and condition separately. Shaded orange and green areas illustrate the time windows across which an extremum was defined as

the N1 or P2 peak in individual subjects. (D) Bar graphs denote the mean and 95% CIs (across participants) of the difference between peak amplitudes in the “Neighbor
2” and “Neighbor 1” conditions. Peak amplitudes were z-scored for N1 and P2 separately (after reversing the sign of the N1 data points).

Table 3 Linear mixed-effects (LME) results including interactions with frequency range

Estimate SE F(1,6188) P-value d

Predictors
Intercept N1 −0.76 0.1 55.3 1.2E−13 −1.4

P2 −0.36 0.1 9.7 1.9E−03 −0.57
Interval-Mean N1 0.054 0.01 17.3 3.2E−05 0.76

P2 −0.028 0.01 4.2 4.1E−02 −0.37
Interval-Previous N1 0.027 0.009 8.8 3.0E−03 0.54

P2 0.043 0.009 21.2 4.1E−06 0.84
Range ∗ Intercept N1 0.018 0.003 36.2 1.9E−09 1.1

P2 0.0041 0.003 1.8 1.8E−01 0.24
Range ∗ Interval-Mean N1 −0.0011 0.0004 7.2 7.4E−03 −0.49

P2 0.0006 0.0004 2.5 1.1E−01 0.29
Range ∗ Interval-Previous N1 −0.0006 0.0003 4.0 4.7E−02 −0.36

P2 −0.0007 0.0003 6.2 1.2E-02 −0.46
Comparisons between pairs of predictors
N1 versus P2 (Range ∗ Intercept) 10.9 9.5E−04 0.6
N1 versus P2 (Range ∗ Interval-Mean) 9.08 2.5E−03 −0.55
N1 versus P2 (Range ∗ Interval-Previous) 0.13 0.71 0.06

Note: Entries are similar to Table 2. Here only data from Experiment 3 (31 participants) were used to train the model, resulting in 6200 observations for N1 and P2
altogether (Methods).
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Figure 4. Illustration of the adaptation model. (A) An example segment of a tone sequence in the experiment serving as stimulus. Color code as in Figure 1. (B)
Schematic Gaussian frequency RA curves of neural populations assumed by the model. All curves have the same bandwidth σ and each curve is centered around 1

of the 5 tone frequencies in the sequence. The color of the curves matches the color of the stimulus at its best frequency. The amplitudes of the curves represent
the average adaptation of the neural populations throughout the sequence (excluding 5 initial tone presentations). Populations with RA curves centered around the
middle frequency (red), respond most frequently throughout the sequence and therefore have the most adapted (attenuated) RA profile. (C) Exponential recovery from
adaptation. The red curves represent the frequency RA curves of a population at 2 time points during a period with no tone presentations. Inset below is an exponential

recovery function for a given time constant τ . The curve increases along the arrow connecting the dark to the light red curves, as specified by the exponential function
in the inset.

for comparability. However, while Herrmann et al.’s studies fixed
a priori the time constants for recovery from adaptation, we
went a step further and used the model to estimate them from
the data. We fitted model predictions to single-trial N1 and P2
amplitudes and estimated σ , the bandwidth of frequency RA
profiles, and τ , the time constant of recovery from adaptation
(Fig. 4), for N1 and P2 separately.

The Adaptation Model Accounts for both N1 and P2
Data

The model was fitted to single-trial N1 and P2 data separately,
and the values of the time and frequency scale parameters,

−→
θ =

(σ , τ ), were estimated by selecting the
−→
θ

max = (σmax, τmax) values
maximizing the log-likelihood (LLmax), using a search over a pre-
determined grid of parameter values. To test the significance
of the fit, we fitted the model to surrogate data consisting of
random permutations of the measured responses across time
(Methods). We did that for Experiments 1, 2, and 3 separately,
as well as when using all data together. The adaptation model
fitted the data better than chance in all cases. In almost all
cases, for both N1 and P2, the LLmax values obtained using the
actual data were much larger than all null LLmax values obtained
from the surrogate data. The only exception was the case of
N1 in Experiment 2, for which the LLmax value obtained using
the actual data was smaller than the null LLmax in 1/100 cases.
Since 100 repetitions were used to estimate the null distribution,
P < 0.01 in all cases but N1 in Experiment 2 for which P < 0.02
(Supplementary Fig. S4).

N1 Has a Longer Adaptation Recovery Time than P2

The estimated time constant for recovery from adaptation, τmax,
was consistently longer for N1 relative to P2. This result was
found when fitting the model using data from Experiments 1,
2, and 3 separately, as well as when using the data from all
experiments together. The values of τmaxwere 5, 4.6, 5, or 5 s
for N1 and 0.4, 0.8, 1.6, or 0.8 s for P2 in Experiments 1, 2,
3, or when using all data together, respectively (Fig. 5A,B). In
Experiments 1, 3, and when using all data together, τmax of N1
was on the upper boundary of the allowed parameter range (5 s,

equaling 2 repetitions of a 5-stimulus sequence). We limited the
τ scale to 5 s since the predicted values become almost constant
for larger τ values, due to the fact that the stimulus sequence
was composed of successive permutations of the 5 frequencies.
Therefore, a time constant of 5 s should be interpreted as 5 or
longer.

The difference between τmax of N1 and of P2 was significant
in Experiments 1, 3, and when using all data together, while
Experiment 2 showed the expected trend but did not reach
statistical significance. We used 3 methods for comparing the
time constants estimated for N1 versus for P2 (Methods): First,
the values of τmax of each potential type fell outside the 95%
confidence region of τmax of the other potential type (Fig. 5A,B,
confidence regions based on the χ2(2)distribution for D, Meth-
ods, Supplementary Fig. S5) in all cases except for Experiment
2 for which the value of τmax of P2 fell close to the lower edge
of the confidence region of τmax of N1 and vice versa. Second,
the distribution of differences between τmax of N1 and τmax of
P2 in 100 bootstrap repetitions we performed (sampling with
replacement over the participants and repeating the parameter
estimation procedure) had a mean significantly larger than 0
in all experiments (Supplementary Fig. S6). Third, the difference
between the log-likelihoods calculated at τmax and at τmax of the
other potential type was significantly larger than expected from
the null distribution, estimated by fitting the model to permuted
data, in Experiments 1, 3 and using all data together, although
in Experiment 2 this effect did not reach significance (P < 0.05
in all cases but Experiment 2, Supplementary Fig. S7). Note that
Experiment 2 contained less data than the other experiments
(see Methods) and was therefore likely underpowered, explain-
ing the lack of significance found in some of these statistical
tests for Experiment 2.

N1 and P2 Have Similar Frequency Bandwidths
of Adaptation

In contrast to the time constant, the estimated frequency band-
width, σmax, was largely similar for N1 and for P2. σmax was 10,
7, 9, or 9 semitones for N1 and 4, 9, 9, or 7 semitones for P2
in Experiments 1, 2, 3, or all together, respectively (Fig. 5A). The
only exception was for Experiment 1, in which the value of σmax
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Figure 5. Adaptation model reveals the time and frequency scales of N1 and P2 context sensitivity. (A) D values (−2∗ log-likelihood ratio relative to �θmax which maximizes

the likelihood, Methods), for each possible value of �θ = (τ, σ), for each experiment, for N1 (left) and P2 (right). Cross hairs (N1: orange, P2: green) are located at the
maximum-likelihood estimated parameter values (i.e., at �θmax). Small cross-signs are located at �θmax of the other potential type (exactly the crossing point of the
neighboring plot, same color code), for visual comparison between �θmax of the 2 potential types. Dashed lines surround 95% confidence regions for �θmax calculated

according to the null distribution of D (χ2 with 2 DF, Methods). (B) All values of θmax estimated across the different experiments presented together to facilitate visual
assessment of the stability of results. The dots represent the values of the estimated parameters (identical to the cross-hairs in A). Error bars represent 95% confidence
intervals (identical to horizontal or vertical cuts of the dashed confidence regions in A). (C) Frequency bandwidth depends on spectral context. σmax as a function of
stimulus frequency range for N1 (orange), P2 (green) and for N1 and P2 after permuting the order of trials within each range condition 100 times (dashed, see legend).

Data from Experiment 3 only. Error bars of the N1 and P2 plots are 95% CIs estimated from 100 bootstrap repetitions sampling with replacement the 31 participants
and repeating parameter estimation procedure. Error bars for the permuted data plots are 95% CIs calculated from the 100 permutations.
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Table 4 LME results—effect of frequency range on adaptation bandwidth

Predictors Estimate SE F(1,602) P-value d

Intercept N1 2.7 0.37 52 1.7E−12 0.72
P2 5.7 0.39 218 2.7E−42 1.5

Range N1 0.22 0.013 283 2E−52 1.7
P2 0.13 0.013 95 5.8E−21 0.97

Note: The data consisted of 101 bootstrap estimates of adaptation bandwidth (sampling with replacement from the 31 participants of Experiment 3 and repeating
parameter estimation procedure) for each range condition and potential type (606 data points). The model consisted of fixed and random factors (grouped by bootstrap
number) for each of the listed predictors (Methods). Column headers are similar to Tables 2 and 3.

for P2 was smaller than for N1. This was also reflected in the
confidence regions we calculated (Fig. 5B) and the bootstrap test
(Supplementary Fig. S6).

Adaptation Bandwidth Rescales to the Sequence
Frequency Range

Next, we asked whether the parameters of the model (σmax and
τmax) are constant when the spectral context changes. We fitted
the model and estimated parameter values separately for each
of the frequency range conditions in Experiment 3 (see Meth-
ods). We found that σmax scaled with the stimulus frequency
range such that it was larger for wider stimulus ranges both for
N1 and P2: σmax was 10, 9, and 5 semitones for N1 and 12, 8, and 6
semitones for P2, for the Wide, Medium, and Narrow conditions,
respectively (Fig. 5C, Supplementary Fig. S8). Interestingly, the
values of σmax were consistently close to range/4 (Fig. 5C, diag-
onal dashed line), which is the mean interval between neigh-
boring tones on the sequence-specific frequency axis (since
there are 5 possible tone frequencies and 4 frequency intervals
between them).

Notably, τmax, the time constants estimated for the different
frequency range conditions were: 5, 5, and 5 s for N1 and 4, 0.6,
and 0.8 s for P2, for the Wide, Medium, and Narrow conditions,
respectively (Supplementary Fig. S8). These values are in line
with our result of longer timescales for N1: The timescale of
N1 was larger than the timescale of P2 for all range conditions
and the values of the timescales were consistent with the values
we estimated in the other experiments. The only exception was
the longer timescale of 4 s for P2 estimated for the Wide range
condition. However, the Wide condition had half as many points
as the other conditions (Methods and Fig. 1B) and therefore this
estimate is less reliable.

To test the robustness of the modulation of σ by range, we
performed 100 bootstrap repetitions (sampling with replace-
ment from the 31 participants) and analyzed the resulting σmax

using an LME model (fixed factors: Intercept and range, random
factors: Intercept and range grouped by bootstrap number, Meth-
ods). Table 4 shows that the dependence of the bandwidth on
the range was highly significant with large effect sizes, for both
N1 and P2. Thus, the bandwidths estimated separately for each
range were highly stable both for N1 and P2.

The dependence of σmax on the stimulus frequency range
could potentially be caused merely by an overall reduction of
peak amplitudes in sequences with smaller ranges, without
any relation to the specific order of the tones in the sequence.
To test if this is the case, we permuted the order of data tri-
als within each range condition separately and repeated the
parameter estimation procedure 100 times. The values of σmax

obtained using the permuted data showed a slight modulation

by frequency range (Fig. 5C, pale dashed lines), but it was not
significant (slope of σmax as a function of frequency range esti-
mated for permuted data, N1: 0.04, 95% CI = (−0.03 0.11), not
different from 0: t(298) = 0.99, P = 0.32; P2: 0.05, 95% CI = (−0.02,
0.12), t(298) = 1.37, P = 0.17). Furthermore, the slopes of σmax as
a function of frequency range were significantly larger when
using the real and bootstrapped data compared to using the
permuted data (Fig. 5C) both for N1 (0.21, 95% CI = (0.19 0.24);
note that this CI did not overlap with the CI of the slope for per-
muted data presented above) and for P2 (0.13, 95% CI = (0.1 0.15)).
Thus, the overall reduction of amplitudes in sequences with
smaller ranges was not sufficient to explain the spectral context
effect.

Discussion
Our results suggest that neural sensitivity to past stimulation,
integrated over 2 distinct timescales, manifested itself at 2 sep-
arate latencies following stimulus onset. Specifically, we show
that a longer integration timescale (∼5 s) is evident in the ERPs
early after stimulus onset, at a latency of about 100 ms (N1), and
is reflected in apparent sensitivity to the mean tone frequency. A
shorter integration timescale (∼1 s) is evident at a longer latency
after stimulus presentation, about 200 ms (P2) and is reflected
in sensitivity to the immediately preceding stimulus, in line
with recent MEG reports (Quiroga-Martinez et al. 2020; Ander-
mann et al. 2021). Further, we show quantitatively that both
of these responses can be accounted for by frequency-specific
adaptation of neural populations having distinct effective time
constants of recovery. Finally, by varying the frequency range of
the stimulus sequence, we show that spectral context affects the
frequency adaptation bandwidth of these neural populations,
independent of integration times.

Context Integration across Several Timescales

The N1 and P2 auditory-evoked potentials (AEPs) were among
the first recorded human EEG responses (Davis 1939). Their neu-
ral generators and the computations underlying these responses
are still not fully understood (e.g., Picton 2011; Lanting et al.
2013), although their generators are thought to reside mainly in
the posterior superior temporal plane, especially when evoked
using a relatively short SOA of about 0.5 s as in our case (Knight
et al. 1980; Hari et al. 1982). Our results contribute to char-
acterizing the functional distinction between the responses at
the N1 and P2 latencies and thus support the claim that they
reflect distinct neural computations (Knight et al. 1980; Hari
et al. 1982; Lanting et al. 2013). Each of these AEPs probably does
not reflect a single neural generator, but rather sums up several
processes occurring at the time of measurement. For example,
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the N1 was suggested to reflect at least 3 distinct components,
although these components are hard to disentangle (Näätänen
and Picton 1987). Thus, our results may not characterize any
of the individual generating processes for either N1 or P2, but
rather an effective average of those processes that are active at
a specific latency post-stimulus. We found that these processes
have an effective longer integration timescale at the N1 latency
and a shorter integration timescale at the P2 latency.

The electric scalp response at the N1 latency is well known
for being strongly attenuated by stimulus repetition, an effect
termed adaptation, habituation, or refractoriness (e.g., Crowley
and Colrain 2004; Picton 2011). Previous studies have established
that the timescale of N1 adaptation is longer than about 1 s
(Zacharias et al. 2012; Okamoto and Kakigi 2014; Herrmann et al.
2016). N1 adaptation in a sequence of pure tones with varying
frequencies was well accounted for by the frequency-specific
adaptation model we used here (Herrmann et al. 2013, 2014).
However, the adaptation time constant in the latter studies was
preset to 1.8 s, based on Sams et al. (1993). We developed a
rigorous methodology to quantitatively estimate the time con-
stant from the data in such adaptation models and found the N1
adaptation time constant to be longer than previously assumed
by more than a factor of 2, using very similar stimulation param-
eters as Herrmann et al. (2013, 2014).

In contradistinction to N1, the effect of stimulus repetition
on the electric scalp response at the P2 latency is more con-
troversial. P2 was sometimes suggested to be less affected by
adaptation than N1 (Crowley and Colrain 2004; Herrmann et al.
2013, 2016) and sometimes more (Lanting et al. 2013). There is
some suggestive but inconclusive evidence for a shorter adapta-
tion recovery rate of P2 compared to N1 (Hari et al. 1982; Lanting
et al. 2013). Importantly, previous studies failed to account for
P2 responses using adaptation models (Herrmann et al. 2013,
2016), including exactly the same frequency-specific adaptation
model we used here (Herrmann et al. 2013). We suggest that the
failure to account for P2 adaptation could have occurred because
Herrmann et al. (2013) used the same time constant for both
N1 and P2 when fitting the model to the data (see above). Here,
we show instead that P2 fits the frequency-specific adaptation
model very well with a shorter time constant than previously
assumed. In sum, our study sheds new light on the AEP adap-
tation debate by quantitatively showing that frequency-specific
adaptation is present at both the N1 and P2 latencies, but with a
shorter timescale of recovery at the P2 relative to the N1 latency.

The time constants we report may depend on specific details
of the paradigm we used. For example, the sequences we used
did not contain long-term information over timescales longer
than about 5 s. For this reason, we only tested recovery time
constants up to 5 s. In Experiments 1 and 3, the time constant
estimated for N1 reached the maximal value of 5 s (Fig. 5A). This
may indicate that the timescale of N1 sensitivity may be even
longer than what we report here.

Indeed, other human electrophysiology studies used seque-
nces that contained longer-term structure and reported longer
timescales of integration for N1, for example, ∼ 10 s (Herrmann
et al. 2016). Furthermore, Costa-Faidella et al. (2011) found that
in pure tone sequences, P2 and the MMN were sensitive both
to regularities established across short (<1 s) and long (∼10 s)
timescales. It could be that sequences embedding longer-term
structure can reveal longer timescale sensitivity of P2 as well.
However, the long-term structure in Costa-Faidella et al. (2011)
was the violation of a globally established regularity. Thus, the
reported long-term sensitivity of P2 in the latter study may

reflect deviance-detection and prediction mechanisms, whereas
the effects we report here may be due to adaptation mecha-
nisms that are not specifically related to regularity extraction.
The equiprobable structure of the tone sequences as well as
the unattended paradigm we used suggests that both response
timescales we characterized reflect automatic processes that do
not directly depend on attention mechanisms.

Importantly, future studies of context-dependent auditory
processing should consider the complex effects that can be
caused by adaptation mechanisms prior to assuming deviance-
detection or other predictive processes. One way to do so is to
check whether such results can be explained by a flexible adap-
tation model as we presented here. More complex mechanisms
may be implicated only if they improve the data fit beyond such
adaptation models (e.g., Taaseh et al. 2011; Garrido et al. 2013).

Early Processing of Long and Later Processing of Short
Timescales

Interestingly, we found that the earlier responses, at the
N1 latency, had a longer time constant compared to the
later P2 latency. Similarly, early auditory processing of long-
scale sequence properties and later processing of short-scale
properties were recently reported in a MEG study (Maheu et al.
2019). These results are surprising because longer timescales
of integration are frequently associated with a higher-level
of processing, which is expected to take place higher in the
processing hierarchy. For example, some studies employing
“global–local” paradigms found that early sensory responses
were sensitive to short-term, local regularities whereas later
activity was sensitive to long-term regularities (Bekinschtein
et al. 2009; Recasens et al. 2014; Zhang et al. 2018). However,
the distinction between short- and long-term regularities in the
latter studies, established in the context of deviance detection
paradigms, is likely to reflect neural mechanisms that may be
distinct from the ones underlying our results, obtained in a
passive paradigm with no regularities or deviance.

One can interpret our results in terms of resolution, associat-
ing a longer scale with coarser temporal resolution and a shorter
scale with a higher resolution for processing finer details. This
view corresponds with theories such as the frame-and-fill model
developed for vision (Bar 2006; Snyder et al. 2012) or reverse
hierarchy theory initially also developed for vision (Ahissar and
Hochstein 2004) but later extended to audition (Nahum et al.
2008). By these theories, we quickly obtain a general gist of the
sensory scene at a coarse resolution. Later on, the perceptual
system may gradually resolve the details of the sensory scene,
expressed in the shorter temporal scales of processing at later
stages, consistent with our results.

Sensitivity to the Mean

Temporal averaging plays an important role in perception
(Hollingworth 1910; Haberman et al. 2009; Albrecht and Scholl
2010; McDermott and Simoncelli 2011; McDermott et al. 2013).
Our results manifest modulation of neural responses due to the
mean of previous stimuli: N1 responses were most adapted for
stimuli closest to the mean, consistent with previous reports
(Ulanovsky et al. 2004; Herrmann et al. 2013, 2014). Although we
did not measure perception in this study, the neural machinery
described here may be related to the neural computation of
mean and its influence on perception. For instance, judgments
in a frequency discrimination task were biased toward the
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mean of past stimuli (Raviv et al. 2012; Lieder et al. 2019). This
perceptual bias to the mean was correlated with ERP adaptation
(Jaffe-Dax et al. 2017), potentially linking it with the neural
effects we study here. We suggest that the mean is represented
by the adaptation level of a frequency-specific, yet wideband,
neuronal population that adapts momentarily to stimuli as they
come, then recover with a long time constant. The frequency
corresponding to the most adapted population is the mean
frequency of the sequence. This results in a time-dependent
estimate of the mean frequency, which effectively averages
past stimuli with a sliding window whose duration depends
on the time constant of recovery. Our results demonstrate that
information about the mean can co-exist in the auditory cortex
with more local information about fast changes in stimulus
properties.

Frequency Bandwidth Rescales to Spectral Range

We found that adaptation bandwidths rescale to the range of
frequency distributions in the sequence. Our results are consis-
tent with previous reports for N1 (Herrmann et al. 2013, 2014,
2015) and generalize them for P2 as well. This suggests that
sensitivity of adaptation bandwidths to the spectral context is
a general feature of auditory cortex, independent of the inte-
gration timescales. Somewhat similar effects, although in the
context of deviance detection, have been shown by Garrido et al.
(2013).

What could be the mechanism of this sensitivity to the
spectral context? Dynamic adjustment of neural input–output
functions due to changes in statistical properties of preceding
stimulation has been directly shown using neural measure-
ments in nonhuman animals for various perceptual dimensions
such as light intensity (Dunn and Rieke 2006), visual motion
(Brenner et al. 2000), and whisker motion in the rat barrel cor-
tex (Maravall et al. 2007). In the auditory modality, rescaling
of neuronal tuning to varying statistical properties of sounds
was reported in the bird midbrain (Nagel and Doupe 2006),
mammalian inferior colliculus (Kvale and Schreiner 2004; Dean
et al. 2008; Dahmen et al. 2010), and primary auditory cortex
(Blake and Merzenich 2002; Gourévitch et al. 2009; Rabinowitz
et al. 2011). Thus, the change of neural response patterns due to
stimulation statistics could reflect activity from the same neural
population that undergoes rapid changes in network connec-
tivity (Arnsten et al. 2010; Rabinowitz et al. 2011). Alternatively,
the changes of neuronal response characteristics we measured
using different frequency ranges may also reflect recruitment
of distinct neuronal populations, each with its own fixed, dis-
tinct spectral and temporal response properties (Lee et al. 2016;
Osman et al. 2018).

In conclusion, we find distinct responses in high-order audi-
tory cortex, which show shorter and longer timescales of adap-
tation and which quickly and automatically adjust to the spec-
tral context. Adaptation with distinct timescales can lead to
heterogenous response characteristics enabling a complex anal-
ysis of incoming stimuli. We show that the temporal effects
may be due to different rates of recovery from adaptation. The
mechanisms underlying the spectral effects remain to be deter-
mined.
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Supplementary material can be found at Cerebral Cortex online.
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